Artificial Neural Network Selection for the Detection of Plant Viruses

نویسندگان

  • D. Frossyniotis
  • P. Yialouris
چکیده

The aim of this work is the development of an intelligent system for the detection of plant viruses, using biosensors and Artificial Neural Networks. The system is based on the Bioelectric Recognition Assay (BERA) method for the detection of viruses, developed by our team. BERA sensors detect the electric response of culture cells suspended in a gel matrix, as a result to their interaction with virus’s cells, rendering thus feasible its identification. Currently this is achieved empirically by examining the biosensor’s response data curve. In this paper, we used specialized Artificial Neural Networks that were trained to recognize plant viruses according to biosensors’ responses. Moreover, in order to increase the stability and the generalization capability of the classification model we applied a smoothing technique of the data. In addition, we used an advanced energy function for the training of the ANN network to reduce the complexity of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

Assessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)

Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...

متن کامل

Assessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)

Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013